Interrogation rapide n° 2

1 heure

	Cours	Exercice 1	Exercice 2	Exercice 3	BONUS
Total	6	2	4	8	2

I Questions de cours

- 1. Donner la définition d'une moyenne arithmétique.
- 2. Donner la propriété concernant la somme des premiers termes d'une suite arithmétique.
- 3. Donner la forme explicite d'une suite arithmétique dont le premier terme est u_p .

II Exercices

Exercice 1

- 1. 7, 3, -1 et -5 peuvent-ils être les termes consécutifs d'une suite arithmétique?
- 2. Calculer la moyenne arithmétique de 125 et 245.

Exercice 2

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique définie sur \mathbb{N} . On sait que $u_3=48$ et $u_{10}=125$.

- 1. Calculer la raison et le premier terme de cette suite.
- 2. En déduire u_n en fonction de n.
- 3. Pour quelle valeur de n a-t-on $u_n = 235$?
- 4. A partir de quel rang a-t-on $u_n \geqslant 500$?

IR 2: Suites 1/2

Exercice 3

Partie A: les économies...

Afin de constitué un capital, un épargnant place 2000 euros sur un compte non rémunéré et, chaque mois, verse 80 euros sur ce compte.

On note u_n le montant en euros du capital accumulé au bout de n mois.

Ainsi $u_0 = 2000$.

- 1. Calculer u_1, u_2 et u_3 .
- 2. Déterminer la nature de la suite $(u_n)_{n\in\mathbb{N}}$ en justifiant la réponse.
- 3. On crée la feuille de calcul suivante dans laquelle les cellules de la plage B2:B5 sont au format nombre à deux décimales:

	A	В
1	n	u_n
2	0	2000,00
3	1	
4	2	
5	3	

Quelle formule rentrer en B3 afin que, par recopie vers le bas, on obtienne les premiers termes de la suite (u_n) ?

- 4. Donner la forme explicite de la suite (u_n) .
- 5. Donner une autre formule à rentrer en B3 afin que, comme à la question 3., par recopie vers le bas, on obtienne les premiers termes de la suite (u_n) ?

Partie B : et les dépenses...

Cet épargnant doit surveiller ses dépenses. En janvier 2014 il a dépensé 700 euros et, jusqu'à présent, ses dépenses ont augmenté chaque mois de 5%. On suppose que cette évolution va se poursuivre à l'avenir.

Cette évolution conduit à modéliser le montant en euros des dépenses mensuelles au cours du n-ième mois après janvier 2014 par le terme v_n d'une suite géométrique.

Ainsi $v_0 = 700$.

Dans cette partie, les résultats seront arrondis au centime d'euro.

- 1. Calculer v_1, v_2 et v_3 .
- 2. Conjecturer la forme explicite de la suite (v_n)
- 3. En déduire le montant des dépenses au mois de janvier 2015.

Soit les suites
$$(u_n)_{n\in\mathbb{N}}$$
 et $(v_n)_{n\in\mathbb{N}}$ définies par :
• $u_0=0$ et $\forall n\in\mathbb{N}, u_{n+1}=\frac{2u_n+3}{u_n+4}$
• $\forall n\in\mathbb{N}, v_n=\frac{u_n-1}{u_n+3}$

•
$$\forall n \in \mathbb{N}, v_n = \frac{u_n - 1}{u_n + 3}$$

Montrer que la suite $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison $\frac{1}{5}$

IR 2 : Suites 2/2